Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
BMJ ; 377: e069989, 2022 05 31.
Article in English | MEDLINE | ID: covidwho-1874530

ABSTRACT

OBJECTIVE: To evaluate the effectiveness of heterologous and homologous covid-19 vaccine regimens with and without boosting in preventing covid-19 related infection, hospital admission, and death. DESIGN: Living systematic review and network meta-analysis. DATA SOURCES: World Health Organization covid-19 databases, including 38 sources of published studies and preprints. STUDY SELECTION: Randomised controlled trials, cohort studies, and case-control studies. METHODS: 38 WHO covid-19 databases were searched on a weekly basis from 8 March 2022 to 31 July 2022. Studies that assessed the effectiveness of heterologous and homologous covid-19 vaccine regimens with or without a booster were identified. Studies were eligible when they reported the number of documented, symptomatic, severe covid-19 infections, covid-19 related hospital admissions, or covid-19 related deaths among populations that were vaccinated and unvaccinated. The primary measure was vaccine effectiveness calculated as 1−odds ratio. Secondary measures were surface under the cumulative ranking curve (SUCRA) scores and the relative effects for pairwise comparisons. The risk of bias was evaluated by using the risk of bias in non-randomised studies of interventions (ROBINS-I) tool for all cohort and case-control studies. The Cochrane risk of bias tool (version 2; ROB-2) was used to assess randomised controlled trials. RESULTS: The second iteration of the analysis comprised 63 studies. 25 combinations of covid-19 vaccine regimens were identified, of which three doses of mRNA vaccine were found to be 93% (95% credible interval 70% to 98%) effective against asymptomatic or symptomatic covid-19 infections for non-delta or non-omicron related infections. Heterologous boosting using two dose adenovirus vector vaccines with one dose mRNA vaccine showed a vaccine effectiveness of 94% (72% to 99%) against non-delta or non-omicron related asymptomatic or symptomatic infections. Three doses of mRNA vaccine were found to be the most effective in reducing non-delta or non-omicron related hospital admission (96%, 82% to 99%). The vaccine effectiveness against death in people who received three doses of mRNA vaccine remains uncertain owing to confounders. The estimate for a four dose mRNA vaccine regimen was of low certainty, as only one study on the effectiveness of four doses could be included in this update. More evidence on four dose regimens will be needed to accurately assess the effectiveness of a fourth vaccine dose. For people with delta or omicron related infection, a two dose regimen of an adenovirus vector vaccine with one dose of mRNA booster was 77% (42% to 91%) effective against asymptomatic or symptomatic covid-19 infections, and a three dose regimen of a mRNA vaccine was 93% (76% to 98%) effective against covid-19 related hospital admission. CONCLUSION: An mRNA booster is recommended to supplement any primary vaccine course. Heterologous and homologous three dose regimens work comparably well in preventing covid-19 infections, even against different variants. The effectiveness of three dose vaccine regimens against covid-19 related death remains uncertain. SYSTEMATIC REVIEW REGISTRATION: This review was not registered. The protocol is included in the supplementary document. READERS' NOTE: This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication. This version is update 1 of the original article published on 31 May 2022 (BMJ 2022;377:e069989), and previous versions can be found as data supplements (https://www.bmj.com/content/377/bmj-2022-069989/related). When citing this paper please consider adding the version number and date of access for clarity.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Network Meta-Analysis , RNA, Messenger , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
3.
Lancet Microbe ; 2(12): e704-e714, 2021 12.
Article in English | MEDLINE | ID: covidwho-1683809

ABSTRACT

BACKGROUND: An optimised standard experimental setup across different hospitals is urgently needed to ensure consistency in nucleic acid test results for SARS-CoV-2 detection. A standard comparison across different nucleic acid tests and their optimal experimental setups is not present. We assessed the performance of three common nucleic acid tests, namely digital PCR (dPCR), quantitative PCR (qPCR), and loop-mediated isothermal amplification (LAMP), to detect SARS-CoV-2 in clinical settings. METHODS: In this systematic review and meta-analysis we compared sensitivity and specificity of qPCR, dPCR, and LAMP and their performances when different experimental setups (namely specimen type used, use of RNA extraction, primer-probe sets, and RNA extraction methods) are applied. We searched PubMed, BioRxiv, MedRxiv, SciFinder, and ScienceDirect for studies and preprints published between Feb 29 and Dec 15, 2020. Included dPCR, qPCR, and LAMP studies using any type of human specimens should report the number of true-positive, true-negative, false-positive, and false-negative cases with Emergency Use Authorization (EUA)-approved PCR assays as the comparator. Studies with a sample size of less than ten, descriptive studies, case studies, reviews, and duplicated studies were excluded. Pooled sensitivity and specificity were computed from the true and false positive and negative cases using Reitsma's bivariate random-effects and bivariate latent class models. Test performance reported in area under the curve (AUC) of the three nucleic acid tests was further compared by pooling studies with similar experimental setups (eg, tests that used RNA extracted pharyngeal swabs but with either the open reading frame 1ab or the N primer). Heterogeneity was assessed and reported in I 2 and τ2. FINDINGS: Our search identified 1277 studies of which we included 66 studies (11 dPCR, 32 qPCR, and 23 LAMP) with 15 017 clinical samples in total in our systematic review and 52 studies in our meta-analysis. dPCR had the highest pooled diagnostic sensitivity (94·1%, 95% CI 88·9-96·6, by Reitsma's model and 95·8%, 54·9-100·0, by latent class model), followed by qPCR (92·7%, 88·3-95·6, and 93·4%, 60·9-99·9) and LAMP (83·3%, 76·9-88·2, and 86·2%, 20·7-99·9), using EUA-approved PCR kits as the reference standard. LAMP was the most specific with a pooled estimate of 96·3% (93·8-97·8) by Reitsma's model and 94·3% (49·1-100·0) by latent class model, followed by qPCR (92·9%, 87·2-96·2, and 93·1%, 47·1-100·0) and dPCR (78·5%, 57·4-90·8, and 73·8%, 0·9-100·0). The overall heterogeneity was I 2 0·5% (τ2 2·79) for dPCR studies, 0% (4·60) for qPCR studies, and 0% (3·96) for LAMP studies. AUCs of the three nucleic acid tests were the highest and differed the least between tests (ie, AUC>0·98 for all tests) when performed with RNA extracted pharyngeal swabs using SARS-CoV-2 open reading frame 1ab primer. INTERPRETATION: All three nucleic acid tests consistently perform better with pharyngeal swabs using SARS-CoV-2 open reading frame 1ab primer with RNA extraction. dPCR was shown to be the most sensitive, followed by qPCR and LAMP. However, their accuracy does not differ significantly. Instead, accuracy depends on specific experimental conditions, implying that more efforts should be directed to optimising the experimental setups for the nucleic acid tests. Hence, our results could be a reference for optimising and establishing a standard nucleic acid test protocol that is applicable in laboratories worldwide. FUNDING: University Grants Committee and The Chinese University of Hong Kong.


Subject(s)
COVID-19 , Nucleic Acids , COVID-19/diagnosis , Hospitals , Humans , RNA , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL